CryoEM Facility
Electron Microscopy Sample Characterization, CNB-CSIC, Madrid, Spain
Electron Microscopy and Cryo-CLEM, CNB-CSIC, Madrid, Spain
The Cryo-EM – CSIC facility provides expertise to researchers with samples in the first stages of characterisation. Samples in solution are analysed by negative staining in search of the best conditions. Once found, samples are subjected to different vitrification conditions to test the optimal parameters for grid preparation, which are then screened in a cryomicroscope Talos Arctica 200 kV equipped with a Falcon III electron direct detector. The best grids are used to acquire data for image processing, and in this regard it is advisable to contact the EM Image Processing service for support in the data processing. Recently, the facility has acquired a 300 kV cryomicroscope JEOL CryoARM300 equipped with a Gatan K3 direct detector, so a service only consisting in high-end data acquisition from a valid grid is also available.
Equipment
- Vitrification: FEI Vitrobot and a Leica EM CPC
- JEOL JEM1400 120 kV for sample screening.
- Talos Arctica 200 kV equipped with a Falcon III
- JEOL cryoARM300 equipped with a Gatan K3 electron direct detector and an Omega energy filter
Equipment
SPA, cryo-ET | MicroED, screening, SPA, cryo-ET | Negstain SPA, plastic section tomography, cryo-ET | Cryo-FIB-SEM, volume imaging, lamellae preparation for CryoET | CryoConfocal imaging, correlative microscpy |
Cold FEG | Schottky X-FEG | - | Gemini 2 (FE-SEM) | Laser module URGB (405, 488, 561, 640 nm) |
300kV | 200kV | 120kV | 0.5 kV to 30 kV | - |
- | - | 1,500,000 | 2.5 nm/pxl | Zeiss objective LD EC Epiplan-Neofluar 100x/0.75 DIC |
± 70º | ± 70º | ± 70º | Leica cryostage | - |
Gatan K3 5760 x 4096 @ 75 fps 11520 x 8184 @ 75 fps |
TS Falcon 4 4096 x 4096 @ 320 fps |
Gatan OneView 4096 x 4096 @ 25 fps |
Inlens SE 32.000 x 24.000 |
AiryScan 2 |
- | TS Falcon 3 TS Ceta-D |
Gatan Rio | Inlens ES2, Inlens EsB, ETB (Everhard-Thornley detector), SESI (Secondary Electron, Secondary Ion), aSTEM, aBSD (Backscatter Detector), CL (Cathodoluminescence) | ESID detector, 2 PMT detectors |
Autoloader In-column Omega Energy Filter |
Autoloader | - | - | Colibri 5/7 |
How to apply
Access all the information related to Instruct and their services
Instruct Centre Lead Scientists
José María Valpuesta
Director
jmv@cnb.csic.es
Rocío Arranz Ávila
Technical Director
cryoemcsic_facility@cnb.csic.es
Fco. Javier Chichon
User Support
fjchichon@cnb.csic.es
Mª Teresa Bueno
User Support
mtbueno@cnb.csic.es
Noelia Zamarreño
J. Javier Conesa
David Delgado
Javier Collado
Scientific Highlights
Recent publications that have benefitted from an Instruct Access to the cryoEM facility.
2022
Architecture of torovirus replicative organelles. Ginés Ávila-Pérez; María Teresa Rejas; Francisco Javier Chichón; Milagros Guerra; José Jesús Fernández; Dolores Rodríguez. 2022, Molecular Microbiology. 117 (837-850).
Nanobodies Protecting From Lethal SARS-CoV-2 Infection Target Receptor Binding Epitopes Preserved in Virus Variants Other Than Omicron. Casasnovas, J.M.; Margolles, Y.; Noriega, M.A.; Guzmán, M.; Arranz, R.; Melero, R.; Casanova, M.; Corbera, J.A.; Jiménez-de-Oya, N.; Gastaminza, P.; Garaigorta, U.; Saiz, J.C.; Martín-Acebes, M.Á.; Fe… 2022, Frontiers in Immunology. 13 (1-12).
Structural mechanism for tyrosine hydroxylase inhibition by dopamine and reactivation by Ser40 phosphorylation. María Teresa Bueno-Carrasco; Jorge Cuéllar; Marte I. Flydal; César Santiago; Trond-André Kråkenes; Rune Kleppe; José R. López-Blanco; Miguel Marcilla; Knut Teigen; Sara Alvira; Pablo Chacón; Aurora Ma… 2022, Nature Communications. 13 (727-734).
The Molecular Chaperone CCT Sequesters Gelsolin and Protects it from Cleavage by Caspase-3: CCT-Gelsolin interaction may affect actin dynamics. Cuéllar, Jorge; Vallin, Josefine; Svanström, Andreas; Maestro-López, Moisés; Bueno-Carrasco, María Teresa; Ludlam, W. Grant; Willardson, Barry M.; Valpuesta, José M.; Grantham, Julie. 2022, Journal of Molecular Biology. 434 (1-131).
2021
Chaperonins: Nanocarriers with biotechnological applications. Sergio Pipaón; Marcos Gragera; M. Teresa Bueno-Carrasco; Juan García-Bernalt Diego; Miguel Cantero; Jorge Cuéllar; María Rosario Fernández-Fernández; José María Valpuesta. 2021, Nanomaterials. 11(1-12).
Imaging of virus-infected cells with soft x-ray tomography. Garriga, D.; Chichón, F.J.; Calisto, B.M.; Ferrero, D.S.; Gastaminza, P.; Pereiro, E.; Pérez-Berna, A.J. 2021, VIRUSES. 13 (1-12).
2020
Capping pores of alphavirus nsP1 gate membranous viral replication factories. Rhian Jones; Gabriel Bragagnolo; Rocío Arranz; Juan Reguera. 2020, Nature. 589(615-619).
Four-Dimensional Characterization of the Babesia divergens Asexual Life Cycle, from the Trophozoite to the Multiparasite Stage. Conesa, J.J.; Sevilla, E.; Terrón, M.C.; González, L.M.; Gray, J.; Pérez-Berná, A.J.; Carrascosa, J.L.; Pereiro, E.; Chichón, F.J.; Luque, D.; Montero, E. 2020, mSphere. 5 (1-12).
Interferon-b Stimulation Elicited by the Influenza Virus Is Regulated by the Histone Methylase Dot1L through the RIG-I-TRIM25 Signaling Axis. Marcos-Villar L; Nistal-Villan E; Zamarreño N; Garaigorta U; Gastaminza P; Nieto A. 2020, Cells. 9 (1-12)
Structural insights into influenza A virus ribonucleoproteins reveal a processive helical track as transcription mechanism. Coloma, R.; Arranz, R.; de la Rosa-Trevín, J.M.; Sorzano, C.O.S.; Munier, S.; Carlero, D.; Naffakh, N.; Ortín, J.; Martín-Benito, J. 2020, Nature Microbiology. 5 (727-734).
The chaperonin CCT controls T cell receptor–driven 3D configuration of centrioles. Martin-Cofreces, N.B.; Chichon, F.J.; Calvo, E.; Torralba, D.; Bustos-Moran, E.; Dosil, S.G.; Rojas-Gomez, A.; Bonzon-Kulichenko, E.; Lopez, J.A.; Otón, J.; Sorrentino, A.; Zabala, J.C.; Vernos, I.; V… 2020, Science Advances. 6 (119-131).
2019
Cryo-Electron Tomography and Proteomics studies of centrosomes from differentiated quiescent thymocytes. Busselez, J.; Chichón, F.J.; Rodríguez, M.J.; Alpízar, A.; Gharbi, S.I.; Franch, M.; Melero, R.; Paradela, A.; Carrascosa, J.L.; Carazo, J.M. 2019, Scientific Reports. 9 (1-12).
Structural insights into the ability of nucleoplasmin to assemble and chaperone histone octamers for DNA deposition. Franco, A.; Arranz, R.; Fernández-Rivero, N.; Velázquez-Campoy, A.; Martín-Benito, J.; Segura, J.; Prado, A.; Valpuesta, J.M.; Muga, A. 2019, Scientific Reports. 9 (724-734).
2018
Expression, functional characterization, and preliminary crystallization of the cochaperone prefoldin from the thermophilic fungus chaetomium thermophilum. Morita, K.; Yamamoto, Y.Y.; Hori, A.; Obata, T.; Uno, Y.; Shinohara, K.; Noguchi, K.; Noi, K.; Ogura, T.; Ishii, K.; Kato, K.; Kikumoto, M.; Arranz, R.; Valpuesta, J.M.; Yohda, M. 2018, International Journal of Molecular Sciences. 19 (1-12).
Structure and function of the cochaperone prefoldin. R Arranz; J. Martín-Benito; JM Valpuesta. 2018, Advances in Experimental Medicine and Biology. 1106 (119-131).
X-ray structure of full-length human RuvB-Like 2–mechanistic insights into coupling between ATP binding and mechanical action. Silva, S.T.N.; Brito, J.A.; Arranz, R.; Sorzano, C.Ó.S.; Ebel, C.; Doutch, J.; Tully, M.D.; Carazo, J.M.; Carrascosa, J.L.; Matias, P.M.; Bandeiras, T.M. 2018, Scientific Reports. 8 (1-131).
2016
Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation. Aguilera P; Marcoleta A; Lobos-Ruiz P; Arranz R; Valpuesta JM; Monasterio O; Lagos R. 2016, Frontiers in Microbiology. 7 (1-12).
Resources
- List